http://www.racalinstruments.com

## PRODUCT INFORMATION

## 225 MHz Universal Counter/Timer Model 2201



## - 225 MHz Frequency Measurement and 10 ps Averaged Time Interval Resolution

Optional High-Stability Oscillator<br>Optional Frequency Measurement to 1.3 GHz and OCXO

Comprehensive Arming Capabilities and Trigger Control

10 mV Trigger Resolution
9 Automatic Measurements, Including Peak Signal Amplitude

The Model 2201 is a high-performance, 2channel, 225 MHz Universal
Counter/Timer for applications from R\&D benchtop to Automatic Test Equipment. The module offers nine automatic measurement functions and contains an optional 1.3 GHz third input available for RF requirements.

## Brief Description

The 2201 offers nine automatic measurement functions:

- Frequency
- Period
- Time Interval
- Time Interval Delay
- Pulse Width
- Frequency Ratio Channel A to B
- Totalize
- Phase
- Peak Signal Voltage

High-Performance Trigger The manual trigger mode is programmable from -5.1 V to +5.1 V (-51 V to +51 V in X10 mode) with an exceptional resolution of $10 \mathrm{mV}(100 \mathrm{mV}$ in X10 mode). An automatic trigger mode is also available covering the frequencies from 100 Hz to 150 MHz .

Automatic Attenuation Selection Automatic trigger mode automatically switches attenuator settings if the input signal exceeds 5.1 Vpk-pk.

DVM Measurements
Automatic triggering establishes the peak voltages for setting trigger points. Users employ this feature to measure peak voltage levels.

Individual Channel Filtering
The 2201 contains an independent 100 kHz low-pass filter on each channel to reduce input stage sensitivity when making low-frequency measurements.

## High-Stability Time Base

Users may improve stability by using an external clock or one of the two optional internal high stability time bases. The internal time base options are:

- TCXO: Standard
- OCXO: Option 11

Optional Analog Output
Option 08 (Analog Output) provides a high-accuracy source to drive devices like chart recorders. This option is especially useful in measuring and recording the aging and temperature stability of devices like oscillators and Voltage to Frequency (V-F) converters.

Flexible Gate Time and Delay Time Control
The Model 2201 allows fine control of gate-time and delay-time settings with 46 pre-defined times ranging from 100 $\mu$ s to 10 seconds. In addition, gate or delay may be set to any value between $100 \mu$ s and 1000 seconds using an external input.


## 2201 SPECIFICATIONS

## AUTOMATIC FUNCTIONS

## Frequency

Channels A \& B: DC to 225 MHz
Channel C (Option 41): 50 MHz to 1.3 GHz

Accuracy: $\pm$ (Resolution $\pm$ Timebase Error $\times$ Freq)
Resolution $\leq 10 \mathrm{MHz}$ : $\pm$ LSD $\pm$ [1.4 x TrigError $+2 \mathrm{~ns}] \times$ Freq) /GateTime
Resolution > $10 \mathrm{MHz}: \pm$ LSD
LSD $\leq 10 \mathrm{MHz}$ : (40ns / Gate Time) $x$ Freq.
LSD > $10 \mathrm{MHz}: 4$ / Gate Time)
Period A, Pulse Width A, Time Interval A to B

Range: 10 ns to $10,000 \mathrm{~s}$
Accuracy: $\pm$ Resolution $\pm$ (TimebaseError $\times$ Time) $\pm$ TrigLevelTimingError $\pm 2$ ns
Resolution: $\pm 1 \mathrm{LSD} \pm$ StartTrigError $\pm$ StopTrigError
LSD (Time < 100 s ): 100 ns
LSD (Time $>100 \mathrm{~s}$ ): $5 \times 10^{-9} \times$ Time
Period A (Averaged)
Range: 8 ns to 10 s
Accuracy: $\pm$ Resolution $\pm$ TimebaseError x Period
Resolution: $\pm 1$ LSD $\pm$ (1.4 $\times$ TrigError +2 ns) $\times$ Period $/$ GateTime
LSD: $40 \mathrm{~ns} \times$ Period / GateTime
Number of Periods Averaged: $\mathrm{N}=$ GateTime / Period
Pulse A, Time Interval A to B (Averaged)
Range (Pulse Width A): 5 ns to 10 s
Range (T.I. A to B): 0 ns to 10 s
Accuracy: $\pm$ (Resolution $\pm$ TrigError) / $\sqrt{N} \pm$ TimebaseError $x$ Time $\pm 2 \mathrm{~ns}$
Resolution: $\pm 1$ LSD
LSD: $50 \mathrm{~ns} / \sqrt{\mathrm{N}}$

Dead Time Stop to Start (Min.): 20 ns
Number of Samples Averaged: $\mathrm{N}=$ GateTime $\times$ FreqA
Phase A to B (Averaged)
Phase Range: 0 to $360^{\circ} \times(1-20$ ns $\times$ FreqA)
Frequency Range: 0.1 Hz to 25 MHz
Accuracy: $\pm$ Resolution $\pm 2 \mathrm{~ns} x$ FreqA $\times 360^{\circ} \pm$ (TrigError $x$ FreqA $\left.\times 360^{\circ}\right) / \sqrt{N}$
Resolution: $\pm 1$ LSD
LSD: 25 ns $\times 360^{\circ} \times(1+\sqrt{N}) /$ GateTime or $0.01^{\circ}$, whichever is greater
Number of Cycles Averaged: $\mathrm{N}=$ GateTime $\times$ FreqA
Minimum Amplitude: 100 mVrms sine wave

## Time Interval Delay

(Delays Start of Time Interval
Measurements.)
Range (Internal): $100 \mu \mathrm{~s}$ to 10 s
Range (External): $100 \mu$ s to 10,000 s
Frequency Ratio
(Channel A to Channel B)
Channel A Range: 0.1 Hz to 225 MHz
Channel B Range: 0.1 Hz to 125 MHz
Accuracy \& Resolution: $\pm$ (LSD $\pm$ TrigErrorB $\times$ Ratio) / GateTime
LSD: $4 \times$ Ratio / (FreqA $\times$ GateTime)
Totalize (Channel B by Channel A)
Frequency Range: 0 to 100 MHz
Events: 0 to $10^{16}-1$
Start/Stop Control: Channel A
Accuracy: $\pm$ (PulseRepRateB $\times$ TrigError A) / TotalCountsB
Resolution: 1 LSD
LSD: 1 count
Dead Time (Stop to Start): 20 ns

Peak Signal (Maxima or Minima)
Frequency Range: 40 Hz to 10 MHz
Dynamic Range: $280 \mathrm{mVpk}-\mathrm{pk}$ to 51 Vpk-pk
Accuracy: $\pm$ Resolution $\pm$ ( $10 \%$ of Vpk-pk) $\pm 35 \mathrm{~m}$ V Resolution: 10 mV ( $\times$ Atten)

## INPUT CHARACTERISTICS

(Input Channels A and B )
Frequency Range (DC Coupling) DC to 225 MHz
Frequency Range (AC Coupling) $1 \mathrm{M} \Omega: 30 \mathrm{~Hz}$ to 225 MHz
$50 \Omega$ : 1 MHz to 225 MHz
Low-Pass Filter (Selectable) 100 kHz BW, nominal
Selectable Input Features Impedance: $50 \Omega$ or $1 \mathrm{M} \Omega$ Coupling: AC or DC Attenuation: $\times 1$ or $\times 10$ Trigger Slope: + or -
Sensitivity (Sine Wave, $\times 1$ Atten)
< 100 MHz : 35 mVrms
$<225 \mathrm{MHz}: 50 \mathrm{mVrms}$
Sensitivity (Pulse, 5 ns Width, $\times 1$ Atten) $100 \mathrm{mVpk}-\mathrm{pk}$
Dynamic Range (x1 Atten.)
< $100 \mathrm{MHz}: 34 \mathrm{~dB}$ ( $100 \mathrm{mVpk}-\mathrm{pk}$ to $5 \mathrm{Vpk}-\mathrm{pk}$ )
< $225 \mathrm{MHz}: 24 \mathrm{~dB}$ ( 150 m Vpk-pk to $2.5 \mathrm{Vpk}-\mathrm{pk}$ )
Damage Level (AC or DC) $50 \Omega$ : 5 Vrms
$1 \mathrm{M} \Omega$, DC to 2 kHz ( $\times$ Atten): 200 V (DC + peak AC)
$1 \mathrm{M} \Omega, 2 \mathrm{kHz}$ ( $\times$ Atten) to 100 kHz : $4 \times 10^{5}$ Vrms. Hz x Atten/Freq
$1 \mathrm{M} \Omega$, > $100 \mathrm{kHz}: 5 \mathrm{Vrms}$ (× Atten)

## INPUT CHARACTERISTICS

(Option 41: Input Channel C)
Frequency Range
50 MHz to 1.3 GHz
Input Impedance
$50 \Omega$, nominal
Coupling
AC
Sensitivity (Sine Wave)
$\leq 1.0 \mathrm{GHz}: 25 \mathrm{mVrms}$ $\leq 1.3 \mathrm{GHz}: 50 \mathrm{mVrms}$
Dynamic Range

```
s1.0 GHz: (25 mV to 1 Vrms)
            32dB
\leq 1.3 GHz: (50 mV to 1 Vrms)
            26 dB
```

Damage Level
DC to $100 \mathrm{kHz}: 15 \mathrm{~V}$ (DC +
peak AC)
100 kHz to 1.3 GHz : 5 Vrms

## GATE AND DELAY TIME Modes

Internal Gate: Programmable External Gate: Rear Panel BNC (except TI, PW, and Totalize)
Internal Delay: Programmable (TI only)
External Gate: Rear Panel BNC (TI only)
Internal Range (Gate \& Delay)
$100 \mu \mathrm{~s}$ to 10 s or one period of the input
Internal Resolution (Gate \& Delay) $\leq 1 \mathrm{~ms}: 100 \mu \mathrm{~s}$
$\leq 10 \mathrm{~ms}$ : 1 ms
$\leq 100 \mathrm{~ms}: 10 \mathrm{~ms}$
$\leq 1 \mathrm{~s}: 100 \mathrm{~ms}$
$\leq 10 \mathrm{~s}: 1 \mathrm{~s}$
External Gate Time Range $100 \mu \mathrm{~s}$ to 1000 s
External Delay Range $100 \mu \mathrm{~s}$ to 1000 s
External Gate Delay $<10 \mu \mathrm{~s}$

10 MHz TIMEBASE CHARACTERISTICS
Standard TCXO
Aging Rate: 0.1 ppm/month Temperature Stability: 1 ppm , $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Line Voltage: 0.1 ppm , 10\% change (short term)
Optional OCXO (Option 11)
Accuracy: 0.01 ppm
Temperature Stability: 0.1 ppm , $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Aging Rate: $0.1 \mathrm{ppm} / \mathrm{year}$ Warm-up Time: 0.1 ppm in 3 min .
External Frequency Standard Input Rear Panel BNC

TRIGGERING CHARACTERISTICS
General (Manual or Autotrigger)
Range: $\pm 5 \vee(\times$ Atten $)$, programmable
Accuracy: $\pm 3 \%$ of TrigLevel $\pm 35 \mathrm{mV}$ ( $\times$ Atten)
Resolution: 10 mV ( $\times$ Atten)
Trigger-Level Outputs
Accuracy: $\pm 50 \mathrm{mV} \pm 5 \%$ of TrigLevel

## Auto Trigger

Range (DC \& $1 \mathrm{M} \Omega, \mathrm{AC}$ ): 100 Hz to 150 MHz (Usable to 225 MHz )
Range ( $50 \Omega, \mathrm{AC}$ ): 1 MHz to 150 MHz (Usable to 225 MHz )
Minimum Amplitude: 100 mVrms ( 280 mVpk -pk)

## Auto Attenuation

Mode: Automatically enabled in Autotrigger mode, peak $> \pm 5.1 \mathrm{~V}$ or when the difference between maximum and minimum peaks exceeds 5.1 V .

External Arming
Operation: Arms the instrument when set to HOLD mode
Trigger Delay: < $50 \mu \mathrm{~s}$
Minimum Pulse Width: $10 \mu \mathrm{~s}$
PANEL I/O
Front Inputs
Channel A: BNC, $50 \Omega$ or $1 \mathrm{M} \Omega$
Channel B: BNC, $50 \Omega$ or $1 \mathrm{M} \Omega$
Channel C (Option 41): BNC, $50 \Omega$

## Front Inputs

External Arm/Gate/Delay: $B N C, 1 \mathrm{k} \Omega$
External Frequency Standard: BNC, 10 MHz , TTL

## Rear Outputs

Frequency Standard: BNC, $10 \mathrm{MHz},>2 \mathrm{~V}$
Trigger Level Outputs: Terminals, $1 \mathrm{k} \Omega$

## OPTIONAL FEATURES

Option 08: Analog Output
Range: 0 to 9.99 V
Tracking: Any 3 consecutive digits
Normal: Output proportional to Digits
Offset: Offset added to output
Offset Range: 0-9 V, 1 V resolution
Accuracy and Nonlinearity: $\pm 2 \mathrm{mV}$
Output Impedance: $1 \mathrm{k} \Omega$
Settling Time: 1 ms after measurement end
Option 11: OCXO 10 MHz Reference
Front Panel Output: BNC
Specifications: Per Timebase Specification
Option 41: 1.3 GHz Input C
Frequency Range: 50 MHz to 1.3 GHz

Specifications: Per Input Characteristics

Option 60A: Rack Mount Kit
For 19" Rack Mounting

## GPIB INTERFACE DATA

Programmable Features
All front panel controls except POWER switch
IEEE 488.1 Support
Multiline: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD
Uniline: IFC, REN, EOI, SRQ, ATN
Interface: SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E1
Data Formatting
Measurements (with prefix): 18 ASCII characters plus terminator
Measurements (without prefix): 14 ASCII characters plus terminator
Gate/Delay Time \& Trigger Level (with prefix): 9 ASCII characters plus terminator
Gate/Delay Time \& Trigger Level
(without prefix): 5 ASCII characters plus terminator
Address Selection
Via front panel control, address is stored in a non-volatile memory.

## GENERAL

Display Rate
Normal: 4 Readings/second
Fast: 27 Readings/second
Display
Digits: 9 for mantissa, 2 for exponent
Gate: LED lights when gate is open
Non-Volatile Setups
Including: Trigger levels, gate/delay time, input conditioning and measurement rate
Storage Life: 5 years
Drivers
LabVIEW, LabWindows/CVI
Power Requirements
$115 / 230 \mathrm{~V}_{\text {rms }} \pm 10 \%, 48-63 \mathrm{~Hz}$, 40 W max
Voltage Range Selection
Rear panel switch
Accessories Furnished
Power Cord, User's Manual, Drivers

## ENVIRONMENTAL

## Temperature

Operating: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, 0 to $80 \% \mathrm{RH}$
Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

## Warm-up

1 hour to rated accuracy and stability

## Weight

$8.8 \mathrm{lbs} .(4 \mathrm{~kg})$
Dimensions
$3.43^{\prime \prime}$ H x $8.27^{\prime \prime}$ W x $15.35^{\prime \prime}$ D

## Workmanship Standards

Conforms to IPC-A-610D
EMC (Council Directive 89/336/EEC)
EN55011, Group 1, Class A
EN50082-1, IEC 801-2,3,4
Safety (Low-Voltage Directive 73/23/EEC)
IEC1010-1, UL3111-1,
CSA 22.2 \#1010


## DEFINITIONS OF TERMS LSD:

Unit value of least significant digit, rounded as follows: 1 to $<5 \mathrm{~Hz}->1 \mathrm{~Hz}, 5 \mathrm{~ns}$ to 10 ns $>10 \mathrm{~ns}$, etc.
Trigger Error (TrigError):

$$
\frac{\sqrt{\left(e_{i}^{2}+e_{n}^{2}\right)}}{S_{i}}
$$

where,
$e_{i}$ is the rms noise voltage of the
counter's input channel $(250 \mu \mathrm{~V}$, typical)
$e_{n}$ is the rms noise voltage of the input signal in a 225 MHz bandwidth
$S_{i}$ is the input slew rate at the trigger point
TimebaseError (TimeBaseError): Maximum fractional frequency change in the timebase due to all errors, e.g., aging, temp., line voltage, etc.

Trigger-Level Timing Error (TrigLevelTimingError):

$$
\frac{18 \mathrm{mV}}{S_{i @ \text { start }}}-\frac{18 \mathrm{mV}}{S_{i @ \text { stop }}}
$$

External Arming Trigger Delay: Delay from the positive going slope of the gating signal to the internal gate open signal.
External Gate Delay:
Delay from the positive going slope of the gating signal to the internal gate open signal.

## Dead Time:

Minimum time between measurement which the counter is busy processing and the next measurement. During dead time, the counter will not respond to any input transition.

| ORDERING INFORMATION |  |  |
| :---: | :---: | :---: |
| Model | Description | Part Number |
| 2201 | 225 MHz Universal Counter/Timer (GPIB, TCXO) | 407743-000 |
| 2201 w/ Option 11 | 225 MHz Universal Counter/Timer (GPIB, OCXO) | 407743-001 |
| 2201 w/ Option 8 | 225 MHz Universal Counter/Timer (GPIB, TCXO, Analog Output) | 407743-010 |
| 2201 w/ Option 8 and 11 | 225 MHz Universal Counter/Timer (GPIB, OCXO, Analog Output) | 407743-011 |
| 2201 w/ Option 41 | 1.3 GHz Universal Counter/Timer (GPIB, TCXO) | 407743-100 |
| 2201 w/ Option 41 and 11 | 1.3 GHz Universal Counter/Timer (GPIB, OCXO) | 407743-101 |
| 2201 w/ Option 41 and 8 | 1.3 GHz Universal Counter/Timer (GPIB, TCXO, Analog Output) | 407743-110 |
| 2201 w/ Option 41, 8, and 11 | 1.3 GHz Universal Counter/Timer (GPIB, OCXO, Analog Output) | 407743-111 |
| Option 60A | 19" Rack Mounting Kit | 407745 |

 The CE Mark indicates completed and passed rigorous testing in the area of RF Emissions, Immunity to Electromagnetic Disturbances and complies with European electrical safety standards.

The Racal policy is one of continuous development; consequently, the equipment may vary in detail from the description and specification in this publication.
Racal Instruments Inc., 4 Goodyear St., Irvine, CA 92618-2002. Tel: (800) 722 2528, (949) 859 8999; FAX: (949) 8597139
Racal Instruments Group Ltd., 29-31 Cobham Road, Wimborne, Dorset, BH21 7PF, United Kingdom. Tel: +44 (0) 1202872800; FAX: +44 (0) 1202870810 Racal Instruments France , 18 Avenue Dutarte, 78150 LeChesnay, France. Tel: +33 (1) 3923 2222; FAX: +33 (1) 39232225 Racal Instruments Srl, Via Milazzo 25, 20092 Cinisello Balsamo, Milan, Italy. Tel 00-3902-612 3901, Fax 00-3902-612 93606
 Racal Instruments GmbH, Technologiepark Bergisch Gladbach, Friedrich-Ebert-Strasse, D-51429 Bergisch Gladbach, Germany. Tel: +49 2204844200 , FAX: +49 2204844219

